
Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

A Case for Live, Adversary-Aware ���
Program Testing

Trent Jaeger
Systems and Internet Infrastructure Security Lab

Penn State University

1

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Testing Goal

•  Find potential vulnerabilities…
‣  Key question: What is a vulnerability?

2

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Vulnerabilities

•  A program vulnerability consists of three

elements:
‣  A flaw

‣  Accessible to an adversary

‣  Adversary has the capability to exploit the flaw

•  Claim: Testing techniques focus on subset of
these elements

‣  But all conditions must be present for a true
vulnerability

3

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

A Webserver’s Story …

•  Consider a university department webserver …
GET /~student1/index.html HTTP/1.1

Apache
Webserver

student2/
public_html

student1/
public_html

faculty1/
public_html

/etc/
passwd

Link

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Attack Video

5

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page
Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

What Just Happened?

Webserver

Password
File

Web Pages

Authenticate

Passwd
File

Web PagesAuthenticate

OK Not
OK

Passwd
File

Web PagesServe
Webpage

OK
Not
OK

•  Program received an unexpected resource

‣  when expecting (unexpected attack surface)

‣  when expecting (confused deputy)

Serve
Webpage

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Vulnerabilities

•  Flaw finding

‣  Opening a file is not necessarily a flaw

‣  Checks for correct name filtering and/or binding is expensive,
so not done unless a reason

•  Restricting exploits

‣  Mandatory access control is insufficient

‣  Victim needs to communicate with potential adversaries and
access sensitive resources

•  Adversary access

‣  Not tracked systematically

7

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

STING [USENIX 2012]

•  We actively change the namespace whenever an

adversary can write to a binding used in resolution

‣  Fundamental problem: adversaries may be able to write
directories used in name resolution

•  Generate an adversarial test case and see how program
reacts – live (unoptimized) for <8% overhead

8

V
Detect

Adversary
Access

Detect
Exploit
Success

open(name, …)
fd to /etc/passwd

read(fd, …)
Using malicious fd

Vulnerable!

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

root

Launch Phase

9

Adversary
(group mail)

fd = open(“/var/mail/root”, O_APPEND)

/

var

root
(symbolic link)

etc

passwd

mail

Victim
(user root)

User-space

Kernel

4.	
 Con'nue	
 system	
 call	

delete(“/var/mail/root”);
symlink(“/etc/passwd”,

“/var/mail/root”)

1.	
 Find	
 bindings	

2.	
 Find	
 adversary	
 access	

3.	
 Launch	
 a=ack	
 	

(modify	
 namespace)	

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

root

Detect Phase

10

write(fd)

/

var

root
(symbolic link)

passwd

etc

passwd

mail

Victim
(user root)

User-space

Kernel

1.	
 Vic'm	
 accepts	
 resource	

2.	
 Record	
 vulnerability	

3.	
 Rollback	
 namespace	

4.	
 Restart	
 system	
 call	

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Results - Vulnerabilities

11

STING available at: https://github.com/TJAndHisStudents/sting-linux

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Adversary Models

•  How should we identify adversaries of a program?

12

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Adversary Models

•  How should we identify adversaries of a program?

•  Researchers have evaluated research prototypes
where adversaries are

‣  Not a root process

‣  Not a process with the same user id

•  But, lots of root processes and processes with your
user id – reasons not to trust them

‣  Compromised root network daemons and user processes

‣  ACL Policy may be modified by compromised processes

13

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Adversary Models

•  Instead we have explored using available mandatory

access control (MAC) policies

‣  Fine-grained: confine root processes

‣  Immutable: mandatory system policy

‣  Restrictive: least privilege MAC policies

•  To define a conservative adversary models

‣  What are the minimal set of subjects that a process must
trust when it executes?

•  Those that already have the permissions sufficient to
compromise the process

14

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Subjects That Can Attack Already

•  Subjects a process must trust… [ASIACCS 2012]

‣  Subjects that can modify the process’s executable file

‣  Subjects that can modify the kernel objects

‣  Subjects that can modify executable files of these subjects

•  Applied transitively

•  Practical?

‣  Only 81 of over 2000 system call sites in Linux system
service programs access resources modifiable by these
adversaries

15

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Testing Conclusions

•  What are the lessons from STING that we can use?

•  Adversary accessibility
‣  Vulnerabilities require adversary accessibility

‣  Can leverage conservative adversary models based on available
MAC policies

•  In-vivo
‣  Test the program when it is in a state that accessible to

adversaries

‣  Launch attacks (in some way) to test program reaction, while
keeping the program running (low overhead)

•  Live, Adversary-Aware testing can be practical

16

