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Testing Goal

•  Find potential vulnerabilities…
‣  Key question: What is a vulnerability?
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Vulnerabilities

•  A program vulnerability consists of three 

elements:
‣  A flaw

‣  Accessible to an adversary

‣  Adversary has the capability to exploit the flaw

•  Claim: Testing techniques focus on subset of 
these elements

‣  But all conditions must be present for a true 
vulnerability
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A Webserver’s Story …


•  Consider a university department webserver …
GET /~student1/index.html HTTP/1.1 

Apache
Webserver

student2/
public_html 

student1/
public_html 

faculty1/
public_html 

/etc/ 
passwd 

Link
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Attack Video
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What Just Happened?


Webserver

Password 
File

Web Pages

Authenticate

Passwd 
File

Web PagesAuthenticate

OK Not 
OK

Passwd 
File

Web  PagesServe
Webpage

OK
Not 
OK

•  Program received an unexpected resource

‣           when expecting      (unexpected attack surface)

‣            when expecting         (confused deputy)

Serve
Webpage
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Vulnerabilities

•  Flaw finding

‣  Opening a file is not necessarily a flaw

‣  Checks for correct name filtering and/or binding is expensive, 
so not done unless a reason

•  Restricting exploits

‣  Mandatory access control is insufficient

‣  Victim needs to communicate with potential adversaries and 
access sensitive resources

•  Adversary access

‣  Not tracked systematically
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STING [USENIX 2012]

•  We actively change the namespace whenever an 

adversary can write to a binding used in resolution

‣  Fundamental problem: adversaries may be able to write 
directories used in name resolution

•  Generate an adversarial test case and see how program 
reacts – live (unoptimized) for <8% overhead
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V
Detect 

Adversary 
Access

Detect 
Exploit 
Success

open(name, …)  
fd to /etc/passwd 

read(fd, …) 
Using malicious fd 

Vulnerable!
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root

Launch Phase
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Adversary
(group mail)

fd = open(“/var/mail/root”, O_APPEND) 

/

var

root
(symbolic link)

etc

passwd

mail

Victim
(user root)

User-space

Kernel

4.	
  Con'nue	
  system	
  call	
  

delete(“/var/mail/root”); 
symlink(“/etc/passwd”,  

“/var/mail/root”) 

1.	
  Find	
  bindings	
  
2.	
  Find	
  adversary	
  access	
  
3.	
  Launch	
  a=ack	
  	
  
(modify	
  namespace)	
  



Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page


root

Detect Phase
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write(fd) 

/

var

root
(symbolic link)

passwd

etc

passwd

mail

Victim
(user root)

User-space

Kernel

1.	
  Vic'm	
  accepts	
  resource	
  
2.	
  Record	
  vulnerability	
  
3.	
  Rollback	
  namespace	
  
4.	
  Restart	
  system	
  call	
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Results - Vulnerabilities
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STING available at: https://github.com/TJAndHisStudents/sting-linux 
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Adversary Models

•  How should we identify adversaries of a program?
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Adversary Models

•  How should we identify adversaries of a program?

•  Researchers have evaluated research prototypes 
where adversaries are

‣  Not a root process

‣  Not a process with the same user id

•  But, lots of root processes and processes with your 
user id – reasons not to trust them 

‣  Compromised root network daemons and user processes

‣  ACL Policy may be modified by compromised processes
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Adversary Models

•  Instead we have explored using available mandatory 

access control (MAC) policies

‣  Fine-grained: confine root processes

‣  Immutable: mandatory system policy

‣  Restrictive: least privilege MAC policies

•  To define a conservative adversary models

‣  What are the minimal set of subjects that a process must 
trust when it executes?

•  Those that already have the permissions sufficient to 
compromise the process
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Subjects That Can Attack Already 


•  Subjects a process must trust…  [ASIACCS 2012]

‣  Subjects that can modify the process’s executable file

‣  Subjects that can modify the kernel objects 

‣  Subjects that can modify executable files of these subjects 

•  Applied transitively

•  Practical?

‣  Only 81 of over 2000 system call sites in Linux system 
service programs access resources modifiable by these 
adversaries
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Testing Conclusions

•  What are the lessons from STING that we can use?

•  Adversary accessibility
‣  Vulnerabilities require adversary accessibility

‣  Can leverage conservative adversary models based on available 
MAC policies

•  In-vivo
‣  Test the program when it is in a state that accessible to 

adversaries

‣  Launch attacks (in some way) to test program reaction, while 
keeping the program running (low overhead)

•  Live, Adversary-Aware testing can be practical
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